The deubiquitinating enzyme USP17 blocks N-Ras membrane trafficking and activation but leaves K-Ras unaffected.

نویسندگان

  • Michelle de la Vega
  • James F Burrows
  • Cheryl McFarlane
  • Ureshnie Govender
  • Christopher J Scott
  • James A Johnston
چکیده

The proto-oncogenic Ras isoforms (H, N, and K) have a C-terminal CAAX motif and undergo the same post-translational processing steps, although they traffic to the plasma membrane through different routes. Previously, we have shown that overexpression of the deubiquitinating enzyme USP17 inhibits H-Ras localization to the plasma membrane. Now we report that whereas H-Ras and N-Ras were unable to localize to the plasma membrane in the presence of USP17, K-Ras4b localization was unaffected. EGF stimulation was unable to induce N-Ras membrane localization in USP17-expressing cells. In addition, N-Ras activity and downstream signaling through the MAPK MEK/ERK and PI3K/JNK pathways were blunted. However, we still detected abundant N-Ras localization at the ER and Golgi in USP17-expressing cells. Collectively, our data showed that the deubiquitinating enzyme USP17 blocks EGF-induced N-Ras membrane trafficking and activation, but left K-Ras unaffected.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The deubiquitinating enzyme USP17 is highly expressed in tumor biopsies, is cell cycle regulated, and is required for G1-S progression.

Ubiquitination is a reversible posttranslational modification that is essential for cell cycle control, and it is becoming increasingly clear that the removal of ubiquitin from proteins by deubiquitinating enzymes (DUB) is equally important. In this study, we have identified high levels of the DUB USP17 in several tumor-derived cell lines and primary lung, colon, esophagus, and cervix tumor bio...

متن کامل

A novel RCE1 isoform is required for H-Ras plasma membrane localization and is regulated by USP17.

Processing of the 'CaaX' motif found on the C-termini of many proteins, including the proto-oncogene Ras, requires the ER (endoplasmic reticulum)-resident protease RCE1 (Ras-converting enzyme 1) and is necessary for the proper localization and function of many of these 'CaaX' proteins. In the present paper, we report that several mammalian species have a novel isoform (isoform 2) of RCE1 result...

متن کامل

The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility

Deubiquitinating enzymes are now emerging as potential therapeutic targets that control many cellular processes, but few have been demonstrated to control cell motility. Here, we show that ubiquitin-specific protease 17 (USP17) is rapidly and transiently induced in response to chemokines SDF-1/CXCL12 and IL-8/CXCL8 in both primary cells and cell lines, and that its depletion completely blocks c...

متن کامل

Differences on the inhibitory specificities of H-Ras, K-Ras, and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization.

Ras GTPases include the isoforms H-Ras, K-Ras, and N-Ras. Despite their great biochemical and biological similarities, evidence is mounting suggesting that Ras proteins may not be functionally redundant. A widespread strategy for studying small GTPases is the utilization of dominant inhibitory mutants that specifically block the activation of their respective wild-type proteins. As such, H-Ras ...

متن کامل

Carboxyl methylation of Ras regulates membrane targeting and effector engagement.

Post-translational modification of Ras proteins includes prenylcysteine-directed carboxyl methylation. Because Ras participates in Erk activation by epidermal growth factor (EGF), we tested whether Ras methylation regulates Erk activation. EGF stimulation of Erk was inhibited by AFC (N-acetyl-S-farnesyl-L-cysteine), an inhibitor of methylation, but not AGC (N-acetyl-S-geranyl-L-cysteine), an in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 16  شماره 

صفحات  -

تاریخ انتشار 2010